viernes, 24 de abril de 2009

Adenosín trifosfato




El trifosfato de adenosina (ATP) es la principal fuente de energía de los seres vivos. El ATP alimenta casi todas las actividades celulares, entre ellas el movimiento muscular, la síntesis de proteínas, la división celular y la transmisión de señales nerviosas. En esta representación gráfica de la molécula de ATP creada en ordenador, se han ilustrado en color naranja los tres grupos fosfato en cuyos enlaces se almacena la energía.

El trifosfato de adenosina o adenosín trifosfato (ATP)es un nucleótido básico en la obtención de energía celular. Está formado por una base nitrogenada (adenina) unida al carbono 1 de un azúcar de tipo pentosa, la ribosa, que en su carbono 5 tiene enlazados tres grupos fosfato. Se encuentra incorporada en los ácidos nucleicos.

Se produce durante la fotosíntesis y la respiración celular, y es consumida por muchos enzimas en la catálisis de numerosos procesos químicos. Su fórmula es C10H16N5O13P3

ATP y metabolismo
El acoplamiento entre las reacciones exergónicas que liberan energía al medio y endergónicas (con consumo de energía), en conjunto constituyen el metabolismo celular.
Las reacciones endergónicas se manifiestan durante los procesos anabólicos; de manera que, requieren que se le añada energía a los reactivos (sustratos o combustibles metabólicos), i.e., se le suma energía (contiene más energía libre que los reactivos). Por otro lado, durante las reacciones exergónicas se libera energía como resultado de los procesos químicos (e.g., el catabolismo de macromoléculas). La energía libre se encuentra en un estado organizado, disponible para trabajo biológico útil. Las reacciones endergónicas se llevan a cabo con la energía liberada por las reacciones exergónicas. Las reacciones exergónicas pueden estar acopladas con reacciones endergónicas. Reacciones de oxidación-reducción (redox) son ejemplos de reacciones exergónicas y endergónicas acopladas.
Los organismos pluricelulares del Reino Animal nos alimentamos principalmente de metabolitos complejos (proteínas, lípidos, glúcidos) que degradamos a lo largo del tracto intestinal, de modo que a las células llegan metabolitos menos complejos que los ingeridos.
En la célula son oxidados por una serie de reacciones químicas degradativas (catabolismo). Como productos del catabolismo se obtienen metabolitos simples y energía. Ambos son los precursores para la síntesis de los componentes celulares. Todo el conjunto de reacciones de síntesis se llama anabolismo. En el catabolismo (oxidación) se produce una liberación de electrones que son captados por moléculas transportadoras de electrones como el NAD+ (que al aceptar electrones se reduce a NADH).
Por otra parte, la energía liberada queda retenida en su mayoría en el ATP.
La síntesis (anabolismo) de los compuestos celulares se realiza con los metabolitos simples, utilizando la energía contenida en el ATP y los electrones contenidos en el NADH, ya que éste es un proceso reductivo (toma electrones). El ATP es esa moneda de intercambio energético debido a su estructura química. Cuando se hidroliza libera mucha energía que va a ser captada por las enzimas que catalizan las reacciones de biosíntesis.

Razones químicas de la tendencia a la hidrólisis del ATP [editar]

Las razones químicas de esa tendencia son tres:

Energía de estabilización por resonancia: viene dada por la deslocalización electrónica, es decir, que debido a la distinta electronegatividad entre el P y el O, existe un desplazamiento de los electrones de los dobles enlaces hacia el O. En el enlace doble tienen cierto carácter de sencillo y viceversa.
Pues bien, la energía de estabilización por resonancia es más alta en los productos de hidrólisis que en el ATP. Esto se debe fundamentalmente a que los electrones π (los puntos rojos en los O) de los oxígenos puente entre los P son fuertemente atraídos por los grupos fosfóricos.
La competencia por los electrones π crea una tensión en la molécula; ésta es evidentemente menor (o está ausente) en los productos de hidrólisis. Por lo tanto, hay mayor energía de estabilización por resonancia en los productos de hidrólisis.
Tensión eléctrica entre las cargas negativas vecinas existente en el ATP (las flechas entre los O de los Pi). Esa tensión es evidentemente menor en los productos de hidrólisis.
Solvatación: la tendencia natural es hacia una mayor solvatación. La energía de solvatación es mayor en los productos de hidrólisis que en el ATP.
En la célula existen muchos enlaces de alta energía, la mayoría de los cuales son enlaces fosfato. El ATP ocupa una posición intermedia entre los fosfatos de alta energía.

Una de las más importantes funciones del ATP es dar el paso para que ingresen las sustancias a la celula

MOLÉCULA DE ATP.

El ATP es inestable a ácidos, álcalis y al calor. A pH 7.0 el ATP se encuentra como un anión con cuatro cargas negativas. El fosfato terminal del ATP se puede decir que existe en un estado activado, cuando este fosfato se hidroliza se forma ADP y Pi, dos moléculas de menor contenido energético. El enlace químico que se rompe en esa reacción de hidrólisis se conoce algunas veces como un enlace de alta energía.



¿CUÁL ES LA RAZÓN DE QUE EL ATP TENGA ALTA ENERGÍA DE HIDRÓLISIS?

Los productos resultantes de la hidrólisis, ADP-3 y HPO4-2 se hallan cargados negativamente, por lo que tienen poca tendencia a aproximarse, debido a la repulsión de sus cargas. Es por eso que son más estables que el ATP.

La molécula de ATP-4 a pH 7.0 tiene cargas negativas muy próximas entre sí, lo que ocasiona una fuerte repulsión de sus cargas eléctricas.

Cuando se hidroliza el grupo fosfato terminal desaparece parte de la tensión creada por la repulsión de las cargas eléctricas.

Los productos de la hidrólisis se estabilizan por resonancia.

No hay comentarios:

Publicar un comentario